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Basics of Digital Logic 
 

BOOLEAN ALGEBRA AND LOGIC GATES 
 This is the foundation for design and analysis of digital systems.  It deals with the case where variables assume only one of 

two values: TRUE (usually represented by the symbol '1'), and FALSE (usually represented by the symbol '0'). 
 

BASIC OPERATIONS 
 X and Y: Boolean variables. Boolean variables are used to represent the inputs or outputs of a digital circuit. These three 

are the basic logical operations. All the other operations are derived from these three. 
 

OPERATION BOOLEAN EXPRESSION OPERATION 

NOT 𝑋′( 𝑜𝑟 𝑋̅ ) Logical negation 

AND 𝑋. 𝑌 Logical conjunction of two statements 

OR 𝑋 + 𝑌 Logical disjunction of two statements 
 

TRUTH TABLES AND LOGIC GATES 

 Truth Table: A tabular listing of function values for all possible combinations of values on its input arguments. If there are 
𝑛 inputs, there are 2𝑛 possible combinations. 

 Logic Gates: Hardware components that produce a logic 1 or logic 0 depending on the state of inputs. Boolean functions 
can be implemented with logic gates. 
 

NOT 
gate: 

X F = X' 

0 1 

1 0 
 

2-input 
AND 
gate: 

X Y F = X.Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

2-input 
OR 

gate: 

X Y F = X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 
 Logic Gates (AND, OR, etc.) can have multiple inputs: 
 
 
 
 
 
 
AXIOMS 
 

0.0 = 0 1.1 = 1 0.1 = 1.0 = 0 0̅ = 1 

1+1=1 0+0 = 0 1+0 = 0+1 = 1 1̅ = 0 

 
THEOREMS 
 

Variable dominant rule 𝑋. 1 = 𝑋 𝑋 + 0 = 𝑋 

Commutative rule 𝑋. 𝑌 = 𝑌. 𝑋 𝑋 + 𝑌 = 𝑌 + 𝑋 

Complement rule 𝑋. 𝑋̅ = 0 𝑋 + 𝑋̅ = 1 

Idempotency 𝑋. 𝑋 = 𝑋 𝑋 + 𝑋 = 𝑋 

Identity Element 𝑋. 0 = 0 𝑋 + 1 = 1 

Double negation 𝑋̿ = 𝑋  

Associative rule 𝑋. (𝑌. 𝑍) = (𝑋. 𝑌). 𝑍 𝑋 + (𝑌 + 𝑍) = (𝑋 + 𝑌) + 𝑍 

Distributive rule 𝑋. (𝑌 + 𝑍) = 𝑋. 𝑌 + 𝑋. 𝑍 𝑋 + 𝑌. 𝑍 = (𝑋 + 𝑌). (𝑋 + 𝑍) 

F = X'X

F = X.Y.Z... F = X+Y+Z+...

X

Y

X

Y

Z ...

Z ...

F = X.Y
X

Y

F = X+Y
X

Y
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Other Theorems 
 

Absorption 
𝑋. (𝑋 + 𝑌) = 𝑋. 𝑋 + 𝑋. 𝑌 = 𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋 
𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋 

Adjacency 
𝑋. 𝑌 + 𝑋. 𝑌̅ = 𝑋 
(𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋 

Consensus 

𝑋. 𝑌 + 𝑋̅𝑍 + 𝑌𝑍 = 𝑋𝑌 + 𝑋̅𝑍 
(𝑋 + 𝑌)(𝑋̅ + 𝑍)(𝑌 + 𝑍) = (𝑋 + 𝑌)(𝑋̅ + 𝑍) 
Corollary: (𝑋 + 𝑌)(𝑋̅ + 𝑍) = 𝑋̅𝑌 + 𝑋𝑍 

DeMorgan 
𝑋. 𝑌̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅, 𝑋. 𝑌. 𝑍 …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅ + 𝑍̅ + ⋯ 
𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅, 𝑋 + 𝑌 + 𝑍+. . .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅. 𝑍̅ … 

Simplification 
𝑋. (𝑋̅ + 𝑌) = 𝑋. 𝑌 
𝑋 + 𝑋̅𝑌 = 𝑋 + 𝑌 

 
 A useful application of the theorems is on the simplification of Boolean functions which leads to the reduction of the amount 

of logic gates. For example: 
 

𝐹 = (𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹)(𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅), 𝑋 = 𝐴 + 𝐵̅𝐶, 𝑌 = 𝐷 + 𝐸𝐹 
𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋 
→ 𝐹 = 𝐴 + 𝐵̅𝐶 

𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ )𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑌̅𝑍(𝑋 + 𝑋̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

→ 𝐹 = 𝑌̅𝑍̅̅ ̅̅ = 𝑌 + 𝑍̅ 

𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) 
𝐹 = 𝑋𝑋 + 𝑋𝑌̅ + 𝑌𝑋 + 𝑌𝑌̅ 
𝐹 = 𝑋 + 𝑋(𝑌̅ + 𝑌) = 𝑋 + 𝑋 
→ 𝐹 = 𝑋 
 

 

 

𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥1𝑥2̅̅ ̅ 

𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅(𝑥2 + 𝑥2̅̅ ̅) = 𝑥1𝑥2 + 𝑥1̅̅̅  

𝐹 = 𝑥1̅̅̅ + 𝑥1𝑥2 = (𝑥1̅̅̅ + 𝑥1)(𝑥1̅̅̅ + 𝑥2) 

→ 𝐹 = 𝑥1̅̅̅ + 𝑥2 

𝐹 = 𝐴(𝐵 + 𝐶̅) + 𝐴̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝐹 = 𝐴(𝐵 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝐴 = (𝐴̅ + 𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ). 𝐴 

→ 𝐹 = (𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ). 𝐴 = 𝐴𝐵̅𝐶 

 

DERIVING BOOLEAN FUNCTIONS FROM TRUTH TABLES: 
 
Using 1s:  

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 
 

𝐹 = 𝐴̅𝐵𝐶̅ + 𝐴𝐵̅𝐶̅ + 𝐴𝐵𝐶 
 

Using 0s:  

A B C F 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
 

𝐹 = (𝐴 + 𝐵 + 𝐶)(𝐴̅ + 𝐵 + 𝐶̅) 

A

B

C
F

A

B

C

F

X

Y

F  X F
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Other Logic Gates 
 

 

 

 

 

 

 

𝐹 = 𝑋̅𝑌 + 𝑋𝑌̅ = 𝑋𝑌 
 

2-input 
XNOR 
gate: 

A B F 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

𝐹 = 𝑋𝑌 + 𝑋̅𝑌̅ = 𝑋𝑌̅̅ ̅̅ ̅̅  

 

SUM OF PRODUCTS (SOP) AND PRODUCT OF SUMS (POS) USING MINTERMS AND MAXTERMS: 
 

MINTERMS and MAXTERMS (3 variable function) 
 

 𝒙𝟏 𝒙𝟐 𝒙𝟑 Minterms Maxterms 

0 0 0 0 𝑚0 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀0 = 𝑥1 + 𝑥2 + 𝑥3 

1 0 0 1 𝑚1 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅𝑥3 𝑀1 = 𝑥1 + 𝑥2 + 𝑥3̅̅ ̅ 

2 0 1 0 𝑚2 = 𝑥1̅̅ ̅ 𝑥2𝑥3̅̅ ̅ 𝑀2 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3 

3 0 1 1 𝑚3 = 𝑥1̅̅ ̅ 𝑥2𝑥3 𝑀3 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅ 

4 1 0 0 𝑚4 = 𝑥1𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀4 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3 

5 1 0 1 𝑚5 = 𝑥1𝑥2̅̅ ̅𝑥3 𝑀5 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3̅̅ ̅ 

6 1 1 0 𝑚6 = 𝑥1𝑥2𝑥3̅̅ ̅ 𝑀6 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3 

7 1 1 1 𝑚7 = 𝑥1𝑥2𝑥3 𝑀7 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅ 

 
 For a function with 𝑛 variables, there are 2𝑛 minterms (or 2𝑛 maxterms) from 𝑚0 to 𝑚2𝑛−1 (or from 𝑀0 to 𝑀2𝑛−1) 

 Note that: 𝑚𝑖̅̅̅̅ = 𝑀𝑖. 

 
 A function can be expressed as a sum of minterms or as a product of maxterms: 

 A minterm can be 1 or 0. When the minterm is 1, the minterm is a term of the function. 
 A maxterm can be 1 or 0. When the maxterm is 0, the maxterm is a term of the function. 

 
 Canonical Forms: Sum of products (SOP) that includes only minterms or a Product of sums (POS) containing only maxterms. 

 
 Non-canonical Forms: SOP that includes terms that are not minterms (or a POS that includes terms that are not maxterms). 

For example:  
 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 
 𝐹(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3)(𝑥1̅̅̅ + 𝑥2̅̅ ̅) 

 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2̅̅ ̅𝑥3 + 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅ + (𝑥1̅̅̅ + 𝑥2 + 𝑥3) 
  

2-input 
NAND 
gate 

A B F 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

2-input 
NOR 
gate 

A B F 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

2-input 
XOR 
gate 

A B F 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

X

Y F F
X

Y

X

Y
F  FX

Y
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Example: 
X Y Z F Sum of Products 

0 0 0 0 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅ 
𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚4, 𝑚5, 𝑚6). 

𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∑ 𝑚(0,2,3,7) 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 Product of Sums 

1 0 1 1 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌̅ + 𝑍)(𝑋 + 𝑌̅ + 𝑍̅)(𝑋̅ + 𝑌̅ + 𝑍̅) 

𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀0, 𝑀2, 𝑀3, 𝑀7). 

𝐹(𝑋, 𝑌, 𝑍) = ∏ 𝑀(0,2,3,7) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∏ 𝑀(1,4,5,6) 

1 1 0 1 

1 1 1 0 

 

 Note: 𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) = ∏ 𝑀(0,2,3,7). 
 

TIMING DIAGRAMS 

 

 

 

 

 

 

 

 

 
PRACTICE EXERCISES 
 Simplify the following functions: 

 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅ 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6) 
 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀3, 𝑀4, 𝑀7) 

 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍̅) 
 𝐹 = (𝐴̅𝐵 + 𝐶 + 𝐷)(𝐴̅𝐵 + 𝐷) 
 𝐹 = 𝐴(𝐶 + 𝐷̅𝐵) + 𝐴̅ 

 
 Provide the Boolean functions and sketch the logic circuit. Use the two representations: i) Sum of Products, ii) Product of 

Sums. Also, provide the minterms and maxterms representations. 
A B C F1 F2 F3 F4 F5 F6 F7 

0 0 0 0 1 0 1 0 1 0 

0 0 1 1 0 1 1 1 0 0 

0 1 0 0 0 1 1 0 1 1 

0 1 1 1 0 1 1 1 1 1 

1 0 0 1 0 1 0 0 1 0 

1 0 1 0 1 0 0 1 0 0 

1 1 0 1 1 0 0 0 1 1 

1 1 1 1 1 1 0 1 0 1 
 
 Obtain the logic function (and minimize if possible) of the following circuits: 
 
 
 
 
 
 
 
 
 Draw the timing diagram of the following circuit: 
 
 
 
 
 
 
 

A

B
F

C

A

F

B

C

G

G

f

a

b

f

a

b

Y

C

B

A

Y

C

B

A
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 Design a circuit that verifies the logical operation of 
the OR gate. f = '1' (LED ON) if the OR gate works 

properly. Assumption: when the OR gate is not 
working, it is generating 1's instead of 0's and vice 
versa. Tip: First, generate the truth table. 

 
 Security combination: We have a lock that only opens when we set eight (8) switches 

as in the figure. Each switch represents a Boolean variable. Get the function that opens 
the lock (a logical '1' is generated) when the switches are configured as in the figure. 
Here, an open lock is represented by an LED that is ON. 

 
 Design a logic circuit (simplify your circuit) that opens a lock 

(f=‘1’) whenever one presses the correct number on each 
numpad. We encode each decimal number on the numpad 
using BCD encoding. We expect that each group of 4 bits be in 
the range from 0000 to 1001, the values from 1010 to 1111 
are assumed not to occur. 
Tip: create two circuits: one that verifies the first number (9), 

and the other that verifies the second number (5). Then 
perform the AND operation on the two outputs. This avoids 
creating a truth table with 8 inputs! 
 
 
 
 

SIMPLIFICATION OF FUNCTIONS USING KARNAUGH MAPS 
 
2 variables: 
 
 
 
 
 
 
 
 
 
 
3 variables: 
   

OFF (0)

ON (1)

a

b

f
x

?

?

Numpad 1

Numpad 2

m0 m2

x y

0 0

0 1

1 0

1 1

f

m0
m1
m2
m3

m1 m3

y

x

0 1

x y

0 0

0 1

1 0

1 1

f

0

1

1

0
1 0

y

x

x

0

1

0 1

x

y

y

f = x'y + y'x = m1 + m2

x x

y

y 1 0

x y

0 0

0 1

1 0

1 1

f

1

1

0

1
1 1

y

x

f = x' + y

x x

y

y

m0 m2

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7

m1 m3

z

xy

x y

0

1

00 01

z

zm6 m4

m7 m5

11 10

x y x y x y

x x

yy y

1 0

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

1

1

0

0

1

0

0

1

1 0

z

xy

x y

0

1

00 01

z

z0 1

1 0

11 10

x y x y x y

x x

yy y

f = x'y' + z'y' + xyz

1 1

0 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = xy' + z'

1 1

1 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = y' + z'
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4 variables: 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Don’t care outputs 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  

m0 m4

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

m1 m5

zw

xy

x y

00

00 01

m8

m9

11 10

x y x y x y

x x

yy y

m3 m7

m2 m6

m11

m10

m12

m13

m15

m14

01

11

10

z w

z w

z w

z w

z

z

w

w

w

1 0

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

1

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0 1

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

0 1

1 0

0 0

0 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = x'y'w' + x'yw + xy'z'w

1 0

0 1

zw

xy

x y

00

00 01

0 1

1 0

11 10

x y x y x y

x x

yy y

0 1

1 0

1 0

0 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'w' + wy

1 1

0 0

zw

xy

x y

00

00 01

1 1

0 0

11 10

x y x y x y

x x

yy y

1 0

1 1

0 1

1 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'z + w'

0 0

1 0

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

1 0

0 0

0 1

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = wy'

0 0

1 1

zw

xy

x y

00

00 01

0 0

1 X

11 10

x y x y x y

x x

yy y

0 0

0 0

0 0

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = z'w
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PRACTICAL ASPECTS 
 Digital circuits are analog circuits! 

 

PROPAGATION DELAY 
 tP: Propagation delay. 
 
 
 
 
 

TRI-STATE BUFFERS 
Buffers: 
 They can drive more current (e.g.: motors, high-

power LEDs) than simple logic gates. A common 
implementation uses OPAMPs. 

 
Tri-state Buffers: 

  ‘Z’ State: This is high impedance, which 
effectively means that F is disconnected from A. 

 
 
 
 
Applications:  
 Multiplexors, Bidirectional pins, Microprocessor Buses. 
 Example: Bi-directional port (4 bits): 
 

 

 

 

 

 

 

 

 

 

 

HAZARDS 
 A digital circuit can generate glitches, which are fast “spikes”, usually unwanted. 
 Glitches caused by the propagation delays and/or the structure of the circuit are known as hazards. 
 Two types of hazard exist:  

o Static Hazards: They occur when the propagation delays are unbalanced. It can be 
addressed by adding all prime implicants to a function. These hazards happen when inputs 
change, but the output is not supposed to change. Two types: 0  0, or 1  1. 

Example: All gates have a propagation delay of 5 ns. 
 
 
 
 
 
 
 
 
 
  

00

11

a

f

b

c

nb

p

q

5 ns

a

b

c

nb

p

q

f

1

A F=A A F=A'

11001001

4

OE

IN_DATA DATA
4

1110DATA

OE

1001

OUT_DATA

IN_DATA

0111

1110 0111

1010

1001 1010 1001

OUT_DATA

1100

FA

OE

FA

OE

OE = 0  F = Z

OE = 1  F = A

OE = 1  F = Z

OE = 0  F = A

FA
A

F

tP tP
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b7b6b5b4b3b2b1b0

Least significant 

(rightmost) bit

Most significant 

(leftmost) bit

o Dynamic hazards: They are caused by the structure of the circuit. They are difficult to 
detect and address. They usually occur in multilevel circuits. To avoid, use only two-level 
circuits and ensure that there are not static hazards. Two types: 1  0, or 0  1. 

 
 Significance of hazards: 

o Asynchronous circuits: They are very vulnerable to hazards and will usually render the circuits unusable. 
o Synchronous circuits: Hazards do not pose a problem here, as we use registers to safely ignore hazards. 
o Combinational circuits: Hazards are usually not a problem because the outputs solely depend on the current inputs (as 

long as the duration between input changes is greater than the propagation delay, which is usually the case). 
 

UNSIGNED INTEGER NUMBERS: BINARY REPRESENTATION 
 

BINARY NUMBER SYSTEM 

 Binary numbers are very practical as they are used by digital computers. For 
binary numbers, the counterpart of the decimal digit (that can take values from 
0 to 9) is the binary digit, or bit (that can take the value of 0 or 1). 

 Bit: Unit of information that a computer uses to process and retrieve data. It 

can also be used as a Boolean variable. 
 Binary number: This is represented by a string of bits using the positional number representation: 𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0 

 
CONVERTING A BINARY NUMBER INTO A DECIMAL NUMBER: 

 Positional number representation for a binary number with ‘n’ bits:  

 
 
 
 

The binary number can be converted to a positive decimal number by using the following formula: 

𝐷 = ∑ 𝑏𝑖 × 2𝑖

𝑖=𝑛−1

𝑖=0

= 𝑏𝑛−1 × 2𝑛−1 + 𝑏𝑛−2 × 2𝑛−2 + ⋯ + 𝑏1 × 21 + 𝑏0 × 20 

 To avoid confusion, we usually write a binary number and attach a suffix ‘2’:  (𝑏𝑛−1𝑏𝑛−2 … 𝑏1𝑏0)2 
Example: 6 𝑏𝑖𝑡𝑠: (101011)2 ≡ 𝐷 = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 43 

4 𝑏𝑖𝑡𝑠: (1011)2 ≡ 𝐷 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 11 

 
 Maximum value and range for a given number of bits: 
 

Number of bits Maximum value Range 

1 12  21-1 0  12        0  21-1 

2 112  22-1 0  112       0  22-1 

3 1112  23-1 0  1112      0  23-1 

4 11112  24-1 0  11112     0  24-1 

…   

n 111…1112  2n-1 0  111…1112  0  2n-1 

 
 Maximum value for ‘n’ bits: The maximum binary number is given by an n-bit string of 1’s: 111…111. Then, the maximum 

decimal number is given by:  
 
 
 
 

 With ‘n’ bits, we can represent 2n positive integer numbers from 0 to 2n-1. 

 
 The case n=8 bits is of particular interest, as a string of 8 bits is called a byte. For 8-bit numbers, we have 256 numbers in 

the range 0 to 28-1  0 to 255. 

 
 
 
 
 

01

10

D = 111...111 = 1 2n-1 + 1 2n-2 + ... + 1 21 + 1 20 = 2n-1

n bits

bn-1bn-2 ... b1b0

Least significant 

(rightmost) bit

Most significant 

(leftmost) bit

DIGIT

0 1 2 3 4 5 6 7 8 9 0  1

BIT
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CONVERTING A DECIMAL NUMBER (INTEGER POSITIVE) INTO A BINARY NUMBER 
 Examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Note that some numbers require fewer bits than others. If we want to use a specific bit representation, e.g., 8-bit, we just 
need to append zeros to the left until the 8 bits are completed. For example: 
   1101002  001101002 (8-bit number) 

  11110112  011110112 (8-bit number) 

 
CONVERSION OF A NUMBER IN ANY BASE INTO A DECIMAL NUMBER 
 
 To convert a number of base 'r' (r = 2, 3,4 ,…) to decimal, we use the following formula: 

Number in base 'r': (𝑟𝑛−1𝑟𝑛−2 … 𝑟1𝑟0)𝑟 

𝐷 = ∑ 𝑟𝑖 × 𝑟𝑖

𝑖=𝑛−1

𝑖=0

= 𝑟𝑛−1 × 𝑟𝑛−1 + 𝑟𝑛−2 × 𝑟𝑛−2 + ⋯ + 𝑟1 × 𝑟1 + 𝑟0 × 𝑟0 

Also, the maximum decimal value for a number in base 'r' with 'n' digits is: 
𝐷 = 𝑟𝑟𝑟 … 𝑟𝑟𝑟 = 𝑟 × 𝑟𝑛−1 + 𝑟𝑛−2 × 𝑟𝑛−2 + ⋯ + 𝑟 × 𝑟1 + 𝑟 × 𝑟0 = 𝑟𝑛 − 1 

 
 Example: Base-8: 

Number of digits Maximum value Range 

1 78  81-1 0  78        0  81-1 

2 778  82-1 0  778       0  82-1 

3 7778  83-1 0  7778      0  83-1 

…   

n 777…7778  8n-1 0  777…7778  0  8n-1 

52

52

Number in

base 10

Number in

base 2

????2

0
26

2

0

1

0

1

1

1101002

stop here!

Number in

base 10

Number in

base 2

????2

26

13

2

13

6

2

6

3

2

3

1

2

1

0

2

Remainder

123
1

61

2

1

0

1

1

1

11110112

stop here!

61

30

2

30

15

2

15

7

2

7

3

2

3

1

2

Remainder

1

0

2

123

1
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Examples:  
 (50632)8: Number in base 8 (octal system) 

Number of digits: n = 5. Conversion to decimal: 𝐷 = 5 × 84 + 0 × 83 + 6 × 82 + 3 × 81 + 2 × 80 = 20890 
 (3102)4: Number in base 4 (quaternary system) 

Number of digits: n = 4. Conversion to decimal: 𝐷 = 3 × 43 + 1 × 42 + 0 × 41 + 2 × 40 = 210 
 
CONVERTING A DECIMAL NUMBER (INTEGER POSITIVE) INTO A NUMBER IN ANY BASE 
 This is a generalization of the method to convert a decimal 

number into a binary number. For example, if you want to convert 
it into a base-8 number, just divide by 8 and group the 
remainders. 

 
 Example: Converting a decimal number to base-8:  
 
 
 
 
 
 
 
 
 
 
 
 

HEXADECIMAL NUMBER SYSTEM 

 This is a very useful system as it provides 
a short-hand notation for binary numbers. 

 A hexadecimal digit (also called a nibble) 
can take a value from 0 to 15. To avoid 
confusion, the numbers 10 to 15 are 
represented by letter (A-F): 

 
 
CONVERTING A HEXADECIMAL NUMBER INTO A DECIMAL NUMBER: 
 Positional number representation for a hexadecimal number with ‘n’ nibbles (hexadecimal digits):  
 
 
 
 
 To convert a hexadecimal number into a decimal, we apply the following formula: 

𝐷 = ∑ ℎ𝑖 × 16𝑖

𝑖=𝑛−1

𝑖=0

= ℎ𝑛−1 × 16𝑛−1 + ℎ𝑛−2 × 16𝑛−2 + ⋯ + ℎ1 × 161 + ℎ0 × 160 

 To avoid confusion, it is sometimes customary to append the prefix ‘0x’ to a hexadecimal number: 

0xhn-1hn-2…h1h0 
 Examples: FD0A90: 0FD0A90   F165 + D164 + 0163 + A162 + 9161 + 0160 

 15165 + 14164 + 0163 + 10162 + 9161 + 0160 

  0B871C: 00B871C     0165 + B164 + 8163 + 7162 + 1161 + C160 

 
 The table presents the maximum attainable value for the given number of nibbles (hexadecimal digits).  

Number of nibbles Maximum value Range  

1 F  161-1 0  F          0  161-1 

2 FF  162-1 0  FF         0  162-1 

3 FFF  163-1 0  FFF        0  163-1 

4 FFFF  164-1 0  FFFF       0  164-1 

…   

n FFF…FFF  16n-1 0  FFF…FFF    0  16n-1 

83

83

Number in

base 10

Number in

base 8

????8

3
10

8

2

1

1238

stop here!

10

1

8

1

0

8

Remainder

Hexadecimal digits

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F

Decimal digits

hn-1hn-2 ... h1h0
Least significant 

(rightmost) nibble

Most significant 

(leftmost) nibble
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 Maximum value for ‘n’ nibbles: The maximum decimal value with ‘n’ nibbles is given by: 
 
 
 
 

 With ‘n’ nibbles, we can represent positive integer numbers from 0 to 16n-1. (16n numbers) 
 

UNITS OF INFORMATION 

Nibble Byte KB MB GB TB 

4 bits 8 bits 210 bytes 220 bytes 230 bytes 240 bytes 

 
 Note that the nibble (4 bits) is one hexadecimal digit. Also, one byte (8 bits) is represented by two hexadecimal digits.  

 While KB, MB, GB, TB (and so on) should be powers of 10 in the International System, it is customary in digital jargon to 
use powers of 2 to represent them. In microprocessor systems, memory size is usually a power of 2 since it is determined 
by the number of addresses the address bus can handle (which is a power of 2). As a result, it is very useful to use the 
definition provided here for KB, MB, GB, TB (and so on).  

 Digital computers usually represent numbers utilizing a number of bits that is a multiple of 8. The fast hexadecimal to binary 
conversion allows us to quickly convert a string of bits that is a multiple of 8 into a string of hexadecimals digits.  

 The size of the data bus in a processor represents the computing capacity of a processor, as the data bus size is the number 
of bits the processor can operate in one operation (e.g.: 8-bit, 16-bit, 32-bit processor). This is also usually expressed as a 
number of bits that is a multiple of 8 

 
CONVERTING BETWEEN HEXADECIMAL AND BINARY NUMBERS 
 Conversions between hexadecimal and binary systems are commonplace when dealing with digital computers: 

 Hexadecimal to binary: We already know how to convert a hexadecimal number into a decimal number. We can then 
convert the decimal number into a binary number (using successive divisions). 

 Binary to hexadecimal: We can first convert the binary number to a decimal number. Then, using an algorithm similar 
to the one that converts decimals into binary, we can convert our decimal number into a hexadecimal number. 

 These two conversion processes are too tedious. Fortunately, hexadecimal numbers have an interesting property that allows 
quick conversion of binary numbers to hexadecimals and viceversa: 
 

 Binary to hexadecimal: We group the binary numbers in groups of 4 (starting from the rightmost bit). If the last group 
has fewer than four bits, we append zeros to the left. Then, we independently convert each 4-bit group to its decimal value. 
Note that 4 bits can only take decimal values between 0 and 24-1  0 to 15, hence 4 bits represent only one hexadecimal 

digit, i.e., a 4-bit group can represent up to 16 hexadecimal digits. The figure below shows an example. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Hexadecimal to binary: It is the reverse process of converting a binary into a hexadecimal numbers. We pick each 
hexadecimal digit and convert it (always using 4 bits) to its 4-bit binary representation. The binary number is the 
concatenation of all resulting 4-bit groups. 

 
 
 
 
 

Binary: 10111012 0101 1101
0000    0    0

0001    1    1

0010    2    2

0011    3    3

0100    4    4

0101    5    5

0110    6    6

0111    7    7

1000    8    8

1001    9    9

1010   10    A

1011   11    B

1100   12    C

1101   13    D

1110   14    E

1111   15    F

binary  dec  hex

5 13decimal:

5 Dhexadecimal:

Then: 010111012 = 0x5D

010111012 = 1 26 + 1 24 + 1 23 + 1 22 + 1 20 = 93

0x5D = 5 161 + D 160 = 93

Verification:

FA

1111  1010

C1

1100  0001

DO NOT discard these zeros
when concatening!

0xFA = 111110102
0xC1 = 110000012

D = FFF...FFF =  F 16n-1 +  F 16n-2 + ... +  F 161 +  F 160

15 16n-1 + 15 16n-2 + ... + 15 161 + 15 160 = 16n-1
n nibbles
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APPLICATIONS OF BINARY AND HEXADECIMAL REPRESENTATIONS 
 
INTERNET PROTOCOL ADDRESS (IP ADDRESS): 
 
 Hexadecimal numbers represent a compact way of representing binary numbers. The IP address is defined as a 32-bit 

number, but it is displayed as a concatenation of four decimal values separated by a dot (e.g., 129.26.53.76). 
 The following figure shows how a 32-bit IP address expressed as a binary number is transformed into the standard IP 

address notation. 
 
 
 
 
 
 
 
 
 
 

 
 The 32-bit IP address expressed as binary number is very difficult to read. So, we first convert the 32-bit binary number to 

a hexadecimal number. 
 The IP address expressed as a hexadecimal (0x811A354C) is a compact representation of a 32-bit IP address. This should 

suffice. However, it was decided to represent the IP address in a 'human-readable' notation. In this notation, we grab pairs 
of hexadecimal numbers and convert each of them individually to decimal numbers. Then we concatenate all the values and 
separate them by a dot. 

 Important: Note that the IP address notation (decimal numbers) is NOT the decimal value of the binary number. It is 
rather a series of four decimal values, where each decimal value is obtained by independently converting each two 
hexadecimal digits to its decimal value. 

 
 Given that each decimal number in the IP address can be represented by 2 hexadecimal digits (or 8 bits), what is the 

range (min. value, max. value) of each decimal number in the IP address? 
With 8 bits, we can represent 28 = 256 numbers from 0 to 255. 

 
 An IP address represents a unique device connected to the Internet. Given that the IP address has 32 bits (or 8 

hexadecimal digits), the how many numbers can be represented (i.e., how many devices can connect to the Internet)? 
232 = 4294967296 devices. 

 
 The number of devices that can be connected to the Internet is huge, but considering the number of Internet-capable 

devices that exists in the entire world, it is becoming clear that 32 bits is not going to be enough. That is why the Internet 
Protocol is being currently extended to a new version (IPv6) that uses 128 bits for the addresses. With 128 bits, how 
many Internet-capable devices can be connected to the Internet? 

2128 ≈ 3.4 × 1038 devices 

 
REPRESENTING GRAYSCALE PIXELS 
A grayscale pixel is commonly represented with 8 bits. So, a grayscale pixel value varies between 0 and 255, 0 being the darkest 
(black) and 255 being the brightest (white). Any value in between represents a shade of gray. 
 
 
 
 
 
MEMORY ADDRESSES 
The address bus size in processors is usually determined by the 
number of memory positions it can address. For example, if we have 
a microprocessor with an address bus of 16 bits, we can handle up 
to 216 addresses. If the memory content is one byte wide, then the 

processor can handle up to 216𝑏𝑦𝑡𝑒𝑠 = 64𝐾𝐵. 

 
Here, we use 16 bits per address, or 4 nibbles. The lowest address 
(in hex) is 0x0000 and highest address (in hex) is 0xFFFF.  

 
  

0 255

1000 0001 0001 1010 0011 0101 0100 1100

8    1 1    A    3    5    4    C

IP address notation: 129.26.53.76

129        26        53        76

IP address (binary): 10000001000110100011010101001100

Conversion to

hexadecimal:

IP address (hex): 0x811A354C

Grab pairs of

hexadecimal numbers

and convert each of

them to decimal.

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

1111 1111 1111 1111: 0xFFFF

Address

...

8 bits
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Examples: 

 A microprocessor can only handle memory addresses from 0x0000 to 0x7FFF. What is the address bus size? If each 

memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect? 
 

We want to cover all the cases from 0x0000 to 0x7FFF: 

 

The range from 0x0000 to 0x7FFF is akin to all possible cases 

with 15 bits. Thus, the address bus size is 15 bits. 
 
We can handle 215𝑏𝑦𝑡𝑒𝑠 = 32𝐾𝐵 of memory. 

 
 

 A microprocessor can only handle memory addresses from 0x0000 to 0x3FFF. What is the address bus size? If each 

memory position is one byte wide, what is the maximum size (in bytes) of the memory that we can connect? 
 

We want to cover all the cases from 0x0000 to 0x3FFF:  

 
The range from 0x0000 to 0x3FFF is akin to all possible cases 
with 14 bits. Thus, the address bus size is 14 bits. 
 
We can handle 214𝑏𝑦𝑡𝑒𝑠 = 16𝐾𝐵 of memory. 

 
 
 A microprocessor has a 24-bit address line. We connect a memory chip to the microprocessor. The memory chip addresses 

are assigned the range 0x800000 to 0xBFFFFF. What is the minimum number of bits required to represent addresses in 

that individual memory chip? If each memory position is one byte wide, what is the memory size (in bytes)? 
 

By looking at the binary numbers from 

0x80000 to 0xBFFFFF, we notice that the 

addresses in that range require 24 bits. But all 
those addresses share the same first two MSBs: 
10. Thus, if we were to use only that memory 

chip, we do not need those 2 bits, and we only 
need 22 bits. 

 
We can handle 222𝑏𝑦𝑡𝑒𝑠 = 4𝑀𝐵 of memory. 

 
 A memory has a size of 512KB, where each memory content is 8-bits wide. How many bits do we need to address the 

contents of this memory? 
 

Recall that: 512𝐾𝐵 = 219𝑏𝑦𝑡𝑒𝑠. So we need 19 bits to address the contents of this memory (address bus size = 19 bits) 

In general, for a memory with 𝑁 address positions, the number of bits to address those positions is given by: ⌈log2 𝑁⌉ 
 

 A 20-bit address line in a microprocessor with an 8-bit 
data bus handles 1 MB (220 𝑏𝑦𝑡𝑒𝑠) of data. We want to 

connect four 256 KB memory chips to the 
microprocessor. Provide the address ranges that each 
memory device will occupy.  

 
Each memory chip can handle 256KB of memory.  
256𝐾𝐵 = 218𝑏𝑦𝑡𝑒𝑠, requiring 18 bits for its address. 
 
For a 20-bit address: we have 5 hexadecimal digits that 

go from 0x00000 to 0xFFFFF (220 memory positions). 

 
We divide the 220 memory positions into 4 contiguous 

groups, each with 218 memory positions. The figure 

shows the optimal way of doing so: for each group, the 
18 LSBs of the memory addresses correspond to the 
memory range of a 256 KB memory. And the 2 MSBs of 
the memory addresses are the same within a group. For 
a given memory address, we can quickly determine 
which group it belongs to by looking at its 2 MSBs. 

1000 0000 0000 0000 0000 0000: 0x800000

1000 0000 0000 0000 0000 0001: 0x800001

...

...

...

1011 1111 1111 1111 1111 1111: 0xBFFFFF

Address

...

8 bits

256KB

2

Address 8 bits

0000 0000 0000 0000 0000: 0x00000

0000 0000 0000 0000 0001: 0x00001

...                      ...

0011 1111 1111 1111 1111: 0x3FFFF

0100 0000 0000 0000 0000: 0x40000

0100 0000 0000 0000 0001: 0x40001

...                      ...

0111 1111 1111 1111 1111: 0x7FFFF

1000 0000 0000 0000 0000: 0x80000

1000 0000 0000 0000 0001: 0x80001

...                      ...

1011 1111 1111 1111 1111: 0xBFFFF

1100 0000 0000 0000 0000: 0xC0000

1100 0000 0000 0000 0001: 0xC0001

...                      ...

1111 1111 1111 1111 1111: 0xFFFFF

256KB

1

256KB

3

256KB

4

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0111 1111 1111 1111: 0x7FFF

Address

...
8 bits

0000 0000 0000 0000: 0x0000

0000 0000 0000 0001: 0x0001

...

...

...

0011 1111 1111 1111: 0x3FFF

Address

...

8 bits
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BINARY CODES 
 We know that with 𝑛 bits, we can represent 2𝑛 numbers, from 0 𝑡𝑜 2𝑛 − 1. This is a commonly used range. However, with 

‘n’ bits, we can also represent 2𝑛 numbers in any range. 

 Moreover, with 𝑛 bits we can represent 2𝑛 different symbols. For example, in 24-bit color, each color is represented by 24 

bits, providing 224 distinct colors. Each color is said to have a binary code. 

 N = 5 symbols. With 2 bits, only 4 symbols can be represented. With 3 bits, 8 symbols can be represented. Thus, the number 
of bits required is 𝑛 = 3 = ⌈𝑙𝑜𝑔25⌉ = 𝑙𝑜𝑔28. Note that 8 is the power of 2 closest to N=5 that is greater than or equal to 5. 

 In general, if we have N symbols to represent, the number of bits required is given by ⌈log2 𝑁⌉. For example: 

 Minimum number of bits to represent 70,000 colors:  Number of bits: ⌈log2 70000⌉ = 17 𝑏𝑖𝑡𝑠. 

 Minimum number of bits to represent numbers between 15,000 and 19,096:  There are 19,096-15,000+1=4097. Then, 
number of bits: ⌈log2 4097⌉ = 13 𝑏𝑖𝑡𝑠. 

 
7-bit US-ASCII character-encoding scheme: Each character is represented by 7 bits. Thus, the number of characters that 
can be represented is given by 27 = 128. Each character is said to have a binary code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unicode: This code can represent more than 110,000 characters and attempts to cover all world’s scripts. A common character 
encoding is UTF-16, which uses 2 pair of 16-bit units: For most purposes, a 16 bit unit suffices (216 = 65536 characters): 

 (Greek theta symbol) = 03D1  (Greek capital letter Omega): 03A9  Ж (Cyrillic capital letter zhe): 0416 
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BCD Code: 
 In this coding scheme, decimal numbers are represented in binary form by independently encoding 

each decimal digit in binary form. Each digit requires 4 bits. Note that only values from 0 are 9 
are represented here. 

 This is a very useful code for input devices (e.g.: keypad). But it is not a coding scheme suitable 
for arithmetic operations. Also, notice that the binary numbers 10112(10) to 11112(15) are not 

used. Only 10 out of 16 values are used to encode each decimal digit. 
 Examples: 

 Decimal number 47: This decimal number can be represented as a binary number: 1011112. 

In BCD format, this would be: 0100 01112  

 Decimal number 58: This decimal number can be represented as a binary number: 1110102. 

In BCD format, the binary representation would be: 010110002 
 The BCD code is not the same as the binary number!  

 
 There exist many other binary codes (e.g., reflective gray code, 6-3-1-1 code, 2-out-of-5 code) to represent decimal 

numbers. Usually, each of them is tailored to an specific application. 
 
REFLECTIVE GRAY CODE: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Application: Measuring angular position with 4-bit RGC. 4 beams are emitted along an axis. When a light beam passes 

(transparent spots, represented as whites), we get a logical 1, 0 otherwise. The RGC encoding makes that between areas 
only one bit changes, thereby reducing the possibility of an incorrect reading (especially when the beam between adjacent 
areas). For example: from 0001 to 0011 only one bit flips. If we used 0001 to 0010, two bits would flip: that would be 

prone to more errors, especially when the beams are close to the line where the two areas meet. 
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COMBINATIONAL CIRCUITS:  
 

MULTIPLEXERS (MUXS) 
 This logic circuit selects one of many input signals and forwards the selected input to the output line.  
 Boolean equations for MUX2-to-1, MUX4-to-1, MUX8-to-1: 

 
 
 

 

 

 

 

 

 

 

 

 
 
 
 

 Normally, a multiplexer has 𝑁 = 2𝑛 inputs, one output, and a selector with 𝑛 bits. 

 
 But, if a multiplexer has 𝑁 inputs, where 𝑁 is not a power of 2, the number of bits of the 

selector is given by: ⌈𝑙𝑜𝑔2𝑁⌉. 
 
 
 
 
MULTIPLEXERS WITH ENABLE 
 An enable input provides us with an extra level of control. If the multiplexer is enabled, the circuit works. If the multiplexer 

is not enabled, no input is allowed into the output, and the multiplexer output becomes ‘0’ (if the output is active-high) or 
‘1’ (if the output if active-low). The enable input can be either active-high or active-low: 

 
 
 
 
 
 
 
 
 
 
LOGIC CIRCUITS WITH MUXs 
 Multiplexers can be used to implement 

Boolean Functions. The selector can be 
thought as the input variables, the input 
bits are fixed values that are passed onto 
the output according to the selector. 

 This multiplexor with fixed inputs 
implements a logic function. The 
functionality of this circuit is similar to that 
of a Look-Up Table (LUT), which is a ROM-
like circuit whose values are obtained by 
addressing them. FPGAs implement 
Boolean functions using LUTs. In the 
example, a 3-to-1 LUT is an LUT with 3 
inputs, i.e., it contains 23 = 8 addresses. 
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BUS MULTIPLEXERS 
 
 Usually we want input signals to contain more than one bit.  
 
 In the figure, each input signal contains ‘m’ bits. 
 
 This ‘bus multiplexer’ can be built by ‘m’ multiplexers, each  

taking care of only one bit for all the inputs.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 We have ‘N’ inputs and therefore the selector has 

𝑛 = ⌈𝑙𝑜𝑔2𝑁⌉ bits. 

 Note that the selector is the same for all the multiplexers. 
 
 
 
 
 
 
 
 
 
 

DEMULTIPLEXERS 
 A demultiplexer performs the opposite operation of the multiplexer. 
 
 
 
 
 
 
 
 
 
 
 
Application: Time Division Multiplexing (TDM) 
 
 Digital Telephony: (4 KHz bandwidth) 

 8000 samples per second, 8 bits per sample. This 
requires 64000 bits per second. 

 In the figure, there are 4 telephone lines (4 signals). 
To take advantage of the communication channel, 
only one signal is transmitted at a time. We can do 
this since we are only required to transmit samples 
of a particular signal at the rate of 8000 samples per 
second (or 125 us between samples, this is 
controlled by counters). 
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DECODERS 
 Generally speaking, decoders are circuits that transform the inputs into outputs following a certain rule, provided that the 

number of outputs is greater than or equal to the number of inputs. 
 Here, we discuss standard decoders for which a specific input/output rule exists. These decoders have 𝑛 inputs and 2𝑛 

outputs. We show examples of: a 2-to-4 decoder, 3-to-8 decoder, and a 2-to-4 decoder with enable. The output 𝑦𝑖 is 
activated when the decimal value of the input 𝑤 is equal to 𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LOGIC CIRCUITS WITH DECODERS 
 
 Decoders can be used to implement Boolean 

functions. Note that each output is actually a 
minterm. 

 
 In the example, minterm 2 is activated when 

xyz=010, here only y2 is 1. Also: y5 is activated 
when xyz=101, y7 is activated when xyz=111. 

 

 

 

 

 
Application: Memory Decoding 
 A 20-bit address line in a processor handles up to 220 = 1 𝑀𝐵 of addresses, each address containing one-byte of 

information. We want to connect four 256KB memory chips to the processor. 
 The pink-shaded circuit: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when 

the address falls in the corresponding range. Example: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥5𝐹𝐹𝐹𝐹,  only memory chip 2 is enabled (CE=1). 

If 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 0𝑥𝐷0123,  only memory chip 4 is enabled.  
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ENCODERS 
 Generally speaking, encoders are circuits that transform the inputs into outputs following a certain rule, provided that the 

number of outputs is lower than the number of inputs. 
 Here, we discuss standard encoders for which a specific input/output rule exists. These encoders have 2𝑛 inputs and 𝑛 

outputs. The operation is the opposite of a standard decoder: if an input 𝑤𝑖 is activated, then the index 𝑖 appears at the 
output 𝑦 (in binary form). 

 
 
 
 
 
 
 
 
PRIORITY ENCODERS 
 Standard encoder: we check whether a specific input is activated for the output to have a value. 
 What happens when more than one input is activated? We can include an extra output that is activated to indicate than an 

unexpected condition has occurred. 
 An interesting alternative is to create a priority 

encoder: if more than one input is activated, then 
we only pay attention to the input bit of the 
highest order. For example if 𝑤 = 1101, then we 

only pay attention to 𝑤(3) = 1; if 𝑤 = 0111, we 
only pay attention to 𝑤(2) = 1. This results in the 

following truth table for a 4-to-2 priority encoder: 
 What if no input is activated? Here we run out of output bits in 𝑦 to represent this case. Thus, we include an extra output 𝑧 

that it is ‘0’ when no input activated, and ‘1’ otherwise. 

 

CODE CONVERTERS 
 
BCD TO 7-SEGMENT DECODER 
 It is a decoder because 

the number of outputs is 

greater than the number 
of inputs 

 The truth table considers 
the inputs and outputs to 
be active-high. 

 
 
 
 
 
 
 
 
 
 
 
 
BINARY TO GRAY AND GRAY TO BINARY DECODERS 
 It is a decoder because the number of outputs is equal to the number of inputs. 
 For small input sizes, we can use the truth table method. But for large input sizes (e.g.: 8 bits), the following circuits are 

more efficient: 
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PARITY GENERATORS AND PARITY CHECKERS 

 This is defined in the context of an error detection system with transmission and reception units. 
 Data to be transmitted: 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0 Transmitted stream: 𝑌 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝, p: parity bit 

 Parity definition: 
 Even Parity: 𝑌 has an even number of 1s  pe=1, 0 otherwise 

 Odd Parity: 𝑌 has an odd number of 1s  po=1, 0 otherwise. 

 This definition is problematic since p is not known. An alternative definition, based on the actual data X is: 
 Even Parity: X has an odd number of 1s  pe = 1, 0 otherwise 

 Odd Parity: X has an even number of 1s  po = 1, 0 otherwise. 

 Parity Generator: Circuit that generates the parity bit based on the actual data X 
 Parity Checker: Circuit that verifies whether the stream Y has the correct parity. 
 
Example: 
 For the following error detection system, 𝑋 = 𝑥2𝑥1𝑥0, 𝑛 = 3. The parity generator and checker are always of the same parity:  

 Even Parity Generator: It generates the parity bit pe.  
 Even Parity Checker: It verifies that the received 

stream Y has even parity. If so, rpe =0, otherwise rpe=1 
(to signal an error) 

 Odd Parity Generator: It generates the parity bit po. 
 Odd Parity Checker: It verifies that the received stream 

Y has odd parity. If so, rpo=0, otherwise rpo=1 (to signal 
an error)  

𝑝𝑒 = 𝑥2𝑥1𝑥0,   𝑟𝑝𝑒 = 𝑥2𝑥1𝑥0𝑝𝑒 𝑝𝑜 = 𝑥2𝑥1𝑥0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   𝑟𝑝𝑜 = 𝑥2𝑥1𝑥0𝑝𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 In general for 𝑋 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0: 𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0. 𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 If the # of 1’s in an n-bit stream is odd, the n-bit input XOR gate will return 1, 0 otherwise. 
 If the # of 1’s in an n-bit stream is even, the n-bit input XNOR gate will return 1, 0 otherwise. 

 𝑟𝑝𝑒 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑒. We expect the number of 1s in Y to be even,  an XNOR will detect this. However, we want 
𝑟𝑝𝑒 to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XOR gate. 

 𝑟𝑝𝑜 = 𝑥𝑛−1𝑥𝑛−2 … 𝑥1𝑥0𝑝𝑜
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We expect the number of 1s in to be odd,  an XOR will detect this. However, we want 𝑟𝑝𝑜  

to be 1 when this does not happen (to signal an error). Hence, we use an 𝑛 + 1-bit input XNOR gate. 
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LOOK-UP TABLES (LUTS) 
 The LUT contents are hardwired in this circuit. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding 

one bit. It can also be seen as a multiplexor with fixed inputs. 
 This is how FPGAs implement logic functions. A 4-to-1 LUT can implement any 4-input logic function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
LARGER LUTS  
 
 A larger LUT can be built by building a circuit that allows for more ROM positions. 
 Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a 

NI-to-1 LUT with this method. The figure below shows the case for a LUT 6-to-1 built out of two LUT 5-to-1. Each LUT 5-
to-1 is build out of two LUT 4-to-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 We can build a NI-to-NO LUT using NO NI-to-1 LUTs. This can be seen as a ROM with 2𝑁𝐼 addresses, each address holding 

𝑁𝑂 bits. The figure shows how a LUT 6-to-6 is built: 
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PRACTICE EXERCISES 

 
1. Implement the following functions using i) decoders and ii) multiplexers: 

 𝐹 = 𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ + 𝑍𝑌 

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6). 
 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀2, 𝑀4, 𝑀7) 

 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍̅) 
 𝐹 = 𝑋𝑌 + 𝑌𝑍 + 𝑋𝑍 
 𝐹 = 𝑋𝑌𝑍 

 
2. Using ONLY 4-to-1 MUXs, implement an 8-to-1 MUX. 
 
3. Implement a 6-to-1 MUX using i) only NAND gates, and ii) only NOR gates. 
 
4. Verify that the following circuit made of out of five 2-to-4 decoders with enable represents a 4-to-16 decoder with enable. 

Tip: Create the truth table. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Using only 2-to-1 MUXs, implement the XOR and XNOR gates. 
  
6. Using only a 4-to-1 MUX, implement the following functions.  

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5, 𝑚7). 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚3, 𝑚5) 

 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚3, 𝑚5, 𝑚7). 
 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚5, 𝑚7). 

 
7. Complete the following timing diagram: 
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